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Abstract—Given the high cost of building and operating large-
scale data centers in terms of the power budget, it is crucial
to maximize available power resources for overall quality of
service(QoS). In this paper, we present a power scheduling sys-
tem, Pelican, for large-scale data centers to increase overall QoS
by over-provisioning the number of servers for heterogeneous
workloads. We adopt a two-level design that separate power
scheduling mechanism and power controlling policy without
affecting the already over-complicated job scheduler. Our power
controller leverage both priority and performance as key indica-
tors to control the power of a server, which improves QoS while
significantly reducing the risk of power violations.

We implemented and deployed our Pelican in a real over-
provisioned production data center at Baidu Inc. Our evaluations
show that we are able to utilize 12.7% more computing resources
without any violation and achieve 11.5% offline service through-
put gain while not affecting the latency of online services so as
to improve overall QoS.

Index Terms—power control, data center, scheduling

I. INTRODUCTION

The rapid adoption of Internet of Things and edge comput-
ing, coupled with surge growth of numerous cloud services,
have been accelerating the growth of data center demand
worldwide. To build and operate data centers is extremely
expensive in terms of the power budget. The industry average
capital expenditures (CapEx) of IT critical power is about
10,000 to 25,000 USD per kilowatt [1] and the operational
expenditures(OpEx) can reach 1,000 to 3,000 USD per kilo-
watt year in our data center. Given the tremendous expense, it
is crucial to fully utilize the power capacity of data centers
to reduce the Total Cost of Ownership(TCO) and improve
Quality of Services(QoS).

Conservative server provisioning along with the diurnal
pattern [2], [3], unfortunately, lead to typical low power
utilization in modern data centers [4]–[7]. In order to take
this opportunity to improve QoS, Wang et al. provisioned extra
servers and implemented a statistical power control system [8].
By proactively scheduling fewer jobs to rows with high power
utilization, it showed the possibility to improve throughput
per provisioned watt while preventing clusters from power
outage. The solution, however, is mainly suitable for offline
workloads. Furthermore, scheduling a task to a different server
do not affect its performance only when the task is location

independent. In practical, many offline workloads require to
run on the server where data is located because of the huge
data size. This limits the type of workloads.

Combining online and offline services on the same set of
servers can obviously increase the power utilization but also
introduce more challenges. 1) The number of online services
tasks is purely depending on user input, which data center
manager cannot control. Large power fluctuations are common
and the duration for the increase in power is much shorter than
offline workloads. 2) To make heterogeneous workloads work
harmoniously, the complexity of job scheduler is ever increas-
ing. Furthermore, we may rethink the relationship between job
scheduler and power management.

To address the above limitations and challenges, we in-
vestigate the behavior of power and task in data centers and
present Pelican, a new power scheduling system for large-scale
data centers with heterogeneous workloads. Instead of moving
tasks on spatial dimension, we tried to move tasks on temporal
dimension. Based on the current power of a rack, we will find
an optimized power budget for each server and by limiting
resources for tasks so as to control the power of a server.
In this way, our system can control power resource without
modifying the task assignment. Our work is evaluated in a
production data centers in Baidu, the largest search engine and
one of largest cloud service providers in China with millions
of servers running billions of tasks per day.

To summary, our major contributions include the following:

• A new power scheduling system, Pelican, is proposed
for QoS in large-scale data centers with fixed power
budget and heterogeneous workloads by improving power
utilization on a large scale;

• A two-level design is adopted to separate overall power
scheduling and local power controlling for each server,
which makes our power scheduling system more flexible
and efficient for heterogeneous workloads;

• A simple and effective method is introduced that leverage
task priority and heterogeneous workload property to
improve QoS without modifying the task assignment;

• A large-scale empirical evaluation of Pelican is conducted
against production workloads in a real data center to show
the effectiveness and performance of our system.
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The rest of the paper is organized as following: Section II
introduces the background and our observations. We intro-
duce our system design and implementation of Pelican in
Section III and evaluate the system performance empirically
in Section IV. We then discuss related works in Section V and
followed by a conclusion in Section VI.

II. REVIEW AND OBSERVATION

As shown in [8], low average power utilization, especially
at a larger scale, in the data center along with conservative
server provisioning is one of the main opportunities for over-
provisioning. Here, we are going to provide background infor-
mation as well as review our data center power architecture,
provisioning, which lead to our design.

A. Rack power

A server does not have hard power budget as long as rack
power distribution unit(PDU) can supply enough power but
maximum power of each model of server is measured for
provisioning. Following the definition in [8], we called it
the rated power, or measured maximum power draw from
equipment. Rack level-power, however, is limited by both
physical limits and limits from row level supply. If the power
of a rack exceeds its power budget, we call it a power violation.

The overall power utilization of data centers in Baidu, Inc.
is about 70% to 80%. In order to improve power utilization,
some data centers have provisioned more server. To ensure
safety, the data center operator chooses a power limit that is
lower than physical power limit. And a rack level DVFS is
deployed to those data centers to enforce the power limit. We
monitored the power of a rack for 31 days and found out that
the rack power exceeded rated power for 2% of the time. The
maximum normalized power can reach 1.06. As a result, we
need a better power management solution to improve QoS for
over-provisioned racks with heterogeneous workloads.

B. Power controlling

Without modifying existing software and hardware on a
server, there are two major ways to control power. One way
is cooperating with job scheduler to change the placement of
jobs so as to move the power in the spatial dimension. The
other way is to control the computing resources assigned to
tasks so as to move the power in the temporal dimension.
The power variations in both temporal (over time) and spatial
(across different racks) makes it possible to do either choice.
In this paper, we choose to use the second way. One of
the reason is that our services are location sensitive so that
power controlling should not influence job placement. The
most difficult part for the second way is how we can reduce
performance impact. If we can somehow ”move” part of power
usage of long run and resource hungry tasks during busy time
to idle time, then we can make less performance impact on
short and latency sensitive tasks. To do so, there are two
questions. The first question is how to select proper tasks. In a
heterogeneous workloads environment, offline workloads are
usually much longer than online workloads and also consumes

Fig. 1. System Architecture of Pelican.

more power. Short tasks finished quickly so that we have
no chance to do such operation. On the other hand, online
workloads are more latency sensitive while offline workloads
are more focus on throughput. As a result, offline workloads
are preferred. Within offline tasks, we can choose lower
priority instead of estimating the length of execution, which
is much easier to obtain. In addition, the priority of offline
workload is lower than online workload so that priority could
be a good indicator to choose tasks. The second question is
how can we ”move” the power. Generally, we can achieve
it by controlling computing resources assigned to a task. To
make the controller applicable to all servers in our data center,
as well as keep our controller simple, we decide to use core
binding to control the power of a specific task. Because core
management is a common part when handling heterogeneous
workloads, for example, some cores are reserved only for
online workloads. Core binding can also react in a short time
period and it is widely supported both by OS and hardware in
all servers in our data centers.

III. PELICAN DESIGN AND IMPLEMENTATION

A. Architecture

The overall architecture of Pelican is shown in Figure 1. The
power scheduler implements most functionality of Pelican,
which is responsible to manage one or multiple racks. At
the beginning of each time interval(represented by T ), the
scheduler reads power data from our centralized power mon-
itor, computes the power budget for each server, and deliver
power budget through budget API to resource agent on each
server. The resource agent then limit power usage by process
management and resource management.

B. Power monitoring

We implement our own power monitor, which collects
server-level power utilization, among other metrics through
the intelligent platform management interface (IPMI). The
power monitor samples the power from each server every
time period. Our power monitoring service remains stateless
for easy recovery. In our experiment, the monitoring cycle is



ten seconds, which we believe is a good trade-off between
measurement accuracy and monitoring overhead.

C. Resource agent and budget API

We use the budget API to indirectly control the resource as-
signed to tasks running on servers and leave power controlling
policy to resource agents on servers so that different cluster
could have various policies depending on workload and type
of service. Since local server knows exact types and priorities
of tasks running on it, it is appropriate to do local resource
management instead of managing by power scheduler.

A centralized API server is implemented to act as an adapter
to deliver power budget commands to a specific server. In this
way, the scheduler does not need to locate and communicate
with individual servers in the data center.

D. Scheduler

With API server, we implement a scheduler that periodically
adjusts the power budget of servers so that the total power
of a rack stays under the target power specified by data
center operators. A scheduler can manage several racks at the
same time. The decision process is independent and identical
based on different inputs from racks. So here we discuss the
scheduling method for one rack.

Algorithm 1 shows the overall schedule logic. Data center
operator first decides a fixed power budget Br for a rack
so that our goal is to limit overall rack power less than
it. Then a power threshold Pt is determined based on the
change of power of a rack within a time period (See details
in Section III-E). At each interval (ten seconds in our imple-
mentation), the scheduler obtains power utilization information
from the power monitor. If current rack power exceeds power
threshold, we will compute the power budget for each server
in a rack using the schedule model, which we will discuss
in Section III-E. The goal here is to keep rack power under
power threshold. However, even if the rack power is lower
than the power threshold, we should not stop controlling
immediately because the observed rack power is a result of
working resource agent. On the other hand, rack power in the
next interval may exceed the power threshold again causing
resource agent to be on and off frequently. That’s why a safe
power threshold Ps is introduced to determine if the rack
power is safe enough. Ps should be less than Pt and is also
determined based on the change of power but we will tune
this value in Section IV-E. Only if current rack power is less
than safe power threshold, the scheduler will notify resource
agent to stop resource limit. Finally, we send power budget
command to API server to apply on each server. To maximize
the power utilization, Pt and Ps should be as close to Br as
possible and they are both related to future rack power. Instead
of implementing a predictor, we show how we use a heuristic
method to estimate Pt and Ps in the later part of this section.

The scheduling cycle matches the power monitoring cycle.
Note that the scheduler cannot monitor or control any power
fluctuation within a time interval, imposing a risk of short-
term power violations. This is why we still have DVFS-based

hardware power capping on as a safety-net against these rare
cases.

The scheduler is designed to be stateless, as a result, we
can easily switch to a replica if any scheduler fails.

Input:
– P k

r : Current power of rack k
– P k

t : Threshold of rack k
– P k

s : Safe rack power of rack k
– N : The number of racks
– P k

i : Current power of server i in rack k
– Dk

i : Dynamic power of server i in rack k
– nk: The number of servers in rack k

1: procedure POWER SCHEDULING
2: for k ← 1, N do
3: if P k

r > P k
t then

4: Prest ← P k
r − P k

t

5: Sort servers by Dk
i in decreasing order

6: for i← 1, nk do
7: if Prest ≥ Dk

i ·Rmax then
8: Bk

i = P k
i −Dk

i ·Rmax

9: else if Prest > 0 then
10: Bk

i = P k
i − Prest

11: else
12: Bk

i = P k
i

13: Send Bk
i to budget API

14: else if P k
r < P k

s then
15: Send stop command to budget API

return
Algorithm 1: Power scheduling algorithm

E. Computing the power budget for servers

In order to avoid power violation due to a sudden power
surge, we need to leave a safety margin. Pt and Ps describe
the margin, as it determines when to turn resource agent on
and off. The change of power is basically affected by the
temporal variation of workload. We use a data-driven approach
to estimate them. We would like to keep Pt and Ps close to
rack power budget.

We monitor the power of all racks in our data center for
a long time and collect the power increase for every minute.
We discover that the distribution of power increase varies for
different hours in a day, so we calculate the 99.5-percentile
power increase.

Our estimation is conservative as we are preparing for
almost the largest change in observed history. We can use a
better online power prediction model to get a better estimation,
which we leave for future work.

To determine the budget for each server at the begin of a
time interval is the most important task for the scheduler. We
want to limit enough power usage to avoid power violations,
and in the meantime, reduce overall negative performance
impact on a rack.

Suppose Pi is the current power of i-th server in the rack
and Ii is the idle power of the server. Then an effective power



Symbol Description
Pr The current overall rack power.
Pt The rack power threshold.
Pi The power of i-th server in the rack.
Ii The idle power of i-th server.
Di The dynamic power of i-th server.
∆i The expected reduced power by resource limitation.
Ri The expected power reduce ratio.
Rmax The maximum allowed power reduce ratio.
Bi The result power budget for i-th server.
P ′
r The expected rack power in next time interval.

TABLE I
KEY NOTATIONS IN PROBLEM FORMULATION. ALL POWER METRICS USED

IN THE PROBLEM FORMULATION IS NORMALIZED TO PM .

budget Bi should belong to [Pi, Ii], where the maximum
power of a server can possibly reduce is the dynamic power of
the server Di = Pi−Ii. So if we decide the value of Bi, the ex-
pected reduced power is ∆i = Pi−Bi. Thus, the expected rack
power P ′r = Pr −

∑
i ∆i Now we introduce expected power

reduce ratio as Ri = ∆i/Di. This ratio basically compares the
expected reduced power to its current dynamic power, which
quantifies the impact for current control. Obviously, the range
of Ri is [0, 1]. To limit performance impact of control, our
goal is to minimize average of Ri, which we call it impact
ratio R =

∑
i Ri/n. Furthermore, we have an upper bound

on ratio Ri, denoted as Rmax.
Therefore, we formulate the Power Scheduling Problem

(PSP) as:

min R =
∑

i Ri/n (1)
s.t. 0 ≤ Ri ≤ Rmax (2)

P ′r ≤ Pt, (3)
P ′r = Pr −

∑
i ∆i (4)

Bi = Pi −Ri ·Di (5)

where Bi is the result power budget for each server.
Table I summarizes key notations we used in the problem

formulation.
PSP problem is a typical linear programming (LP) problem.

There are many methods and tools to compute the solution
of this LP problem if a solution exists. The solution of PSP
problem, however, is special so that we can obtain the solution
much easier instead of solving the general problem directly.
Without the loss of generality, we assume that servers are
sorted by Di in decreasing order. Then the solution will be:

Bi =


Pi −Rmax ·Di, if i < k

Pi − (Pr − Pt −
∑k

i=0 Ri ·Di), if i = k

Pi, otherwise
(6)

where

k = sup
x∈Z

(

x∑
i=0

Ri ·Di ≤ Pr − Pt) (7)

So basically the scheduler will limit power budget for servers
with higher dynamic power.

F. Resource agent

As we discussed in Chapter II, the local resource agent limit
power usage by leveraging core binding to control resources of
tasks in our implementation. When a resource agent received a
power budget command, it will control the number of binding
cores in order to control the server power under a specified
power budget until it receives a stop command. The resource
agent reads power information directly from the server and
the controlling cycle in our implementation is 1s. Suppose the
resource agent on server i receive a power budget Bi, then
we can calculate the expected power reduce ratio Ri = Pi−Bi

Pi−Ii
where Pi, Ii are defined in Section III-D. Note that resource
agent works on a higher frequency than power scheduler so
that Bi is fixed within a power scheduler cycle but Pi may
change over time. As a result, we need to calculate Ri every
Resource agent control cycle. Intuitively, the number of cores
to unbind is Ri ·Nc where Nc is the number of running cores.
However, the number of cores does not always linear related
to power consumption. They are just positive correlated. So
we need to gradually control the number of cores binding to
tasks to both increase control accuracy and reduce chattering.
On the other hand, we also need to ensure that the resource
agent can control the power within the given time. So we
adopt a simple linear closed loop control system to unbind
Ri ·Nc/C cores, where C is convergence coefficient. We need
to trade off between the impact of changing binding cores and
convergence time by tuning C and the results are shown in
SectionIV-B.

After we calculate the number of cores to operate, resource
agent will choose task with lower priority to unbind. In
addition, Ri here is different from power scheduler that is not
always positive because server power may be reduced below
power budget. Negative Ri means release unbinded cores or
binding more cores to tasks and the order to choose task is
reversed.

The resource agent may stop partial of low priority tasks
depends on the power budget required but it will never stop
all the task on a server as we have a limit on expected power
reduce ratio introduced in Section III-D.

IV. EVALUATION

A. Experimental setup

1) Cluster setup and workloads: The experiment platform
is several racks which contain more than 200 homogeneous
servers(with 56 cores) in a real over-provisioning production
cluster. By real over-provisioning, we mean that the measured
maximum power can be higher than the designed power
budget. The over-provisioning ratio is 12.7% (this is measured
by turning off DVFS and providing extra power source) and
the rack is protected by DVFS and UPS. Given the hardware
configuration, our goal is to utilize the existing hardware to
improve QoS and significantly reduce power violation.

All servers in these racks are part of a datacenter-wide
resource pool that is managed by a single job scheduler.
Resource agent and power monitor are deployed on every



Fig. 2. Average time for resource agent to reduce power under various
workloads and given different reduce ratio.

server and a central power controller is responsible for manage
all racks with independent decisions.

Three workloads involved in our evaluation: web service,
MPI service, and Map-reduce. The first one is online service
and the last one is offline service. MPI service can be either
online or offline service depends on individual task but MPI
task requires more on stability. Thus it always have a higher
priority than Map-reduce. And Web service always have a
higher priority than MPI service. These are all representative
workloads in our data center.

2) Key performance metrics: First key performance metric
is the number of power violations. Safety is the first priority
when considering over-provisioning. Users may choose to
allow a few power violations, and small violation number
shows the effectiveness of Pelican; Since our monitoring cycle
is 10 seconds, the total time of violations is estimated as
the production of violation number and monitoring cycle.
Second is QoS. For online services, we focus on latency.
And for offline services, we measure throughput. Our goal
is to improve the throughput of offline workloads while not
affecting the latency of online services. Third is the impact
ratio (R). Besides the QoS, we hope to reduce the impact
of operations on the number of servers. Obviously, a smaller
average impact ratio is better;

B. The effectiveness of resource agent

Before we evaluate Pelican, We need to verify if the
resource agent can work as expected given power budget
from API server. To determine the convergence coefficient
C described in Section III-F, let’s first consider an extreme
situation that all 56 cores are running but only one core with
the highest priority consumes 100% of power and the power
budget is 0% of dynamic power. Since scheduler cycle is 10s
and resource agent cycle is 1s, resource agent has 10 times to
control the resource and reduce power. In this case, C should
be equal or less than 5.6 in order to unbind the last target
core. Then, let’s consider the other extreme situation that the
server is running at maximum power and all cores consume
the same amount of power. In this case, since the maximum
allowed power reduce ratio in our experiment is set to over-
provisioning ratio, 12.7%, we need to unbind 12.7% of 56
cores, which is 7.11 cores. Even we unbind 1 core every
second, we are able to unbind 8 cores within 10 seconds. So
we tested the resource agent with various workload when C

Workload Light Heavy
Group Exp Ctr Exp Ctr
Rmean 0.01% 0% 1.7% 0%
Rmax 6.31% 0% 7.12% 0%
Pmean 0.921 0.921 0.972 0.975
Pmax 0.992 1.036 0.998 1.048

V iolations 0 21 0 759

TABLE II
CONTROLLER EFFECTIVENESS UNDER LIGHT / HEAVY WORKLOAD. THE

EXPERIMENT RUNS FOR 24 HOURS AND THE MEASUREMENTS ARE TAKEN
EVERY 10S. Rmean AND Rmax ARE THE MEAN/MAX IMPACT RATIO.
Pmean AND Pmax ARE THE MEAN/MAX POWER DRAW. V iolations IS

THE TOTAL NUMBER OF POWER VIOLATIONS.

is 5 6. We found that the effectiveness of the resource agent is
not very sensitive to C so we set C to 5.6. Figure 2 shows the
average time for resource agent to reduce power under various
workloads and given different reduce ratio. We can see that
the resource agent can always control the power under target
value within a scheduling cycle(< 10s).

C. The effectiveness of Pelican’s control

To evaluate the effectiveness of our system, we first mirror
production MPI and MapReduce workloads to two groups
of racks: experiment and control groups (with Pelican turned
off). We use the scale-down method in [8] to observe power
violation while keeping the physical devices safe. Also, we
turn DVFS off so that our results can reflect real power change.
We conduct our experiment for 24 hours using two extreme
types of workloads in our cluster: heavy and light.

Table II shows a few performance metrics of Pelican. Under
the heavy workload, there are 759 power violations in the
control group without any power control, while there is no
violation using Pelican’s control. This proved the effectiveness
of Pelican’s power control ability.

The vibration of our workload is very high especially under
heavy workloads. if we plot 24-hour power change, we can
not see any detail so we plot 6 hours power change for both
situations to show typical rack power utilization.

Figure 3(a) shows the light workload situation where the
power draws mostly under the power limit. Even in this
situation, we can see sharp power increases from time to time
and several power violations, but overall, very few control
actions are triggered. We can see a very high power increase
happened at about 2.5h. In contrast, the heavy workload
case Pelican control triggered quite often because the average
power draw is very close to the power limit as shown in
Figure 3(b). Besides the effectiveness test, one of our main
goals is to figure out the appropriate rack threshold that can
ensure safety. And then we apply the threshold to the same
test on the production environment without scaling down for
220 hours with no power violence.

D. DVFS approach comparison

As we mentioned in Chapter II, DVFS is another widely
used way to control power resource for tasks but it can cause
overall performance disturbance, which is not suitable for our
situation. In this section, we compare the QoS and demonstrate



(a)

(b)

Fig. 3. Power utilization under light (a) and heavy (b) workload. Pelican is
deployed on Experiment group. And the control group is the base line for
comparison.

our advantage under same over-provisioning ratio. The DVFS
approach limit the power of each server to provisioned power
when the overall power of a rack is close to the power limit.
It is also threshold based approach and we choose the lowest
threshold that can achieve same safety requirements as Pelican
can.

We deploy Web service along with MPI and MapReduce
on two racks with the same over-provision ratio configura-
tion running the same workload trace. As we mentioned in
workload description, Web service tasks are always on online
services and MapReduce tasks are offline workloads but MPI
can be both depending on the applications. We compare QoS
of such cluster under DVFS and under Pelican respectively,
i.e. compare latency on different levels for online tasks and
throughput distribution for offline tasks.

Figure 4 shows the result of the median, 99.5th percentile
and 99.9th percentile latency. Note that the y-axis is logarith-
mic. DVFS reduces the performance of online tasks almost
doubling in terms of 99.5th percentile and 99.9th percentile
latency. And DFVS also increase the median latency by about
half compared with our system.

Figure 5 shows the results for throughput. We can see
that the distribution of resulted throughput is similar. This
is because DVFS can response faster but our method may
provide more cores after power budget control. However, we
still improve 1.43% overall throughput compared to DVFS
method while achieving much better latency for online work-

Fig. 4. Latency comparison using either DVFS or Pelican as power controller.
Latency normalized to the Latency throughput in both case.

Fig. 5. Throughput distribution using either DVFS or Pelican as power
controller. Throughput normalized to the maximum throughput in both case.

loads. This is mainly because we limit power usage on low
priority and longer running offline workloads and not affecting
online services while DVFS slows down overall performance
of server causing longer task queue that significantly increase
the latency of online tasks. This also proves that our method
successfully schedules power on the temporal dimension.

E. Tuning for QoS

Our goal in this work is to improve overall QoS by
utilizing provisioning more server given a fixed power budget.
Specifically, we would like to keep safety first, then ensure that
the latency of online services is not affected and last improve
throughput for offline services.

We have performed a heavy workload evaluation and pro-
duction test to determine rack threshold Pt mainly for safety.
Here we present our evaluation on safe rack power Ps which
determines when to stop resource agent control. Low Ps can
ensure that it is safe to release more computing resources but
it may also cause low performance. On the other hand, high
Ps results in more computing power to be used as soon as
possible but may also lead to surge power increase so that
online services are also involved in resource control.

Thus, we run different Ps from 0.80 to 0.97(the safe
threshold is 0.98) under varying production workload. The
workload input is from production input that we can not
control so we show different workload in different cases.
Table III shows the representative results. Bold rows represent
results under typical workloads. Gt is the throughput gain.
Rmean is the average impact ratio. Pmean and Pmax are the
mean and maximum power. Pmax can exceed, for example in
#12, because it is the power of the control group.

First, we notice that the throughput gain Gt is positive
related to Ps, especially in typical cases #4, #6, #9, and



# Ps Pmean Pmax Rmean Latency Gt

1
0.8

0.936 1.031 0.0069% 1.0 9.7%
2 0.901 1.062 0.032% 1.0 9.30%
3 0.925 1.011 0.067% 1.0 9.7%
4

0.90
0.930 0.994 0% 1.0 10.50%

5 0.864 0.998 0% 1.0 10.10%
6 0.923 1.006 0.06% 1.0 10.31%
7

0.95
0.939 1.018 0.07% 1.0 11.2%

8 0.894 1.003 0.011% 0.995 13.5%
9 0.929 1.013 0.074% 1.0 11.4%

10
0.96

0.930 1.049 0.81% 1.0 11.6%
11 0.868 0.926 0% 1.0 10.8%
12 0.925 1.021 0.078% 0.973 11.90%

TABLE III
QOS UNDER DIFFERENT SAFE RACK POWER Ps AND WORKLOAD
CONDITION. BOLD ROWS REPRESENT RESULTS UNDER TYPICAL

WORKLOADS. Gt IS THE THROUGHPUT GAIN. Pmean AND Pmax ARE THE
MEAN AND MAXIMUM POWER FOR THE CONTROL GROUP, WHICH ARE
GOOD INDICATORS OF THE POWER DEMAND. Rmean IS THE AVERAGE

IMPACT RATIO.

#12. But it is also related to high power demand. For example,
in #11, the overall power demand is low, which cause lower
throughput gain. Then we found that Rmean is sensitive to Ps

when Pmean is high, shown in #1, #4, #7, and #10. Also,
the latency is always not affected when Ps is low.

Overall, we find that 0.95 is an effective choice. The latency
in the typical case is not affected and the throughput increases
by 11.4%. The increment is higher than other choices except
when Ps is 0.96. But the latency is reduced in the typical
case when Ps is 0.96. As a result, we choose 0.95 for Ps

considering safety and QoS.

V. RELATED WORK

The major risk of using over-provisioning is power out-
age so power scheduling becomes the core part of using
it. It can be classified into two directions: scheduling on
the spatial dimension like power-aware workload scheduling
and scheduling on the temporal dimension like task resource
management [9], [10].

Ideal power scheduling on temporal dimension reduces
power draw of a task when the power budget is not enough
and assigning more resources after there are available power
resources in order do not affect the performance of the task.
Sharma et al. proposed a real-time power management proto-
col in the Linux kernel mainly designed for web service [11].
Lo et al. proposed a feedback system that learns from request
latency statistic and adjusts hardware limits to provide just fast
enough server power for data center [12]. Luo et al. designed
a general platform for back-end workloads to achieve energy
proportionality by finding the best hardware configuration
for given workload and service properties [13]. Zheng et
al. explored the combination of power capping using use
four kinds of DVFS algorithm and power shaving by UPS
batteries [14]. On the other hand, utilizing other configurable
hardware or software resource can be found in recent works.
Sun et al. proposed performance-equivalent resource configu-
ration(PERC) to reduce power usage while keeping the same

performance [15]. Kontorinis et al. introduced an architecture
that equips each server with a UPS so that the server can
discharge the battery hen power budget is low and charge the
battery otherwise [16].

Wrong task placement is one of the reasons why the
power budget of a subsystem is not enough while global
power budget is still enough. Scheduling task for energy or
power has been widely studied. One of the simple ideas
is place tasks together and turn off unused servers, which
is called server consolidation. By reducing the idle power,
researches tried to improve the overall energy efficiency of a
data center [17]–[26]. PowerNap [27] and Anagnostopoulou et
al. [28] leveraged hardware power states to change the power
usage of a server according to the current workload. One key
problem to do so is the long transition time [29] so SLAs or
QoS is usually taken into consideration.

The core reason for wrong task placement is usually con-
sidered as the fault of Job scheduler. Nevertheless, many
researchers tried to integrate power management into the
job scheduler or combine power scheduler with QoS-aware
cluster management systems [30]–[32]. Yao et al. proposed
a framework called TS-BatPro to rearrange batching jobs
to save energy for multi-core servers in data center [33].
It studies the performance and power characteristics of a
server and schedules global batching jobs based on the model.
Tesfatsion et al. introduced a dynamic resource management
and scheduling system to improve energy efficiency for cloud
services [34]. Cheng et al. proposed heterogeneity-oblivious
task assignment method, E-Ant, which can improve overall
energy efficiency without hurting the performance of a het-
erogeneous Hadoop cluster [35]. Petrucci et al. proposed a
QoS-aware task management solution that learns from existing
tasks map efficient device to meet the QoS requirements [2].
These systems work well on its own but it is hard to integrate
into real data center job scheduler because there have been
tremendous factors for it to decide where to place task.

VI. CONCLUSION

In this work, we investigate opportunities and challenges of
improving QoS for large-scale data center with heterogeneous
workloads by over-provisioning. While power controlling is
still the key to this problem, heterogeneous workloads requires
faster response time and the ability to deal with the temporal
power management. We design and implement Pelican in
our real over-provisioned production cluster then empirically
demonstrate the feasibility of scheduling power budget within
a rack without affecting task placement to utilize computing
resources but prevent power outage. We adopt a two-level
design that separate overall power scheduling and local power
controlling for each server, which allows resource agent to
maximize its ability to access local task information and react
to large variation quickly while cooperate with other server
with simple interface provided by power scheduler. This makes
our power scheduling system more flexible and efficient for
heterogeneous workloads.
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