
Energy Consumption Analysis of Java
Command-line Options

Mohit Kumar
Mobile and Internet Systems Laboratory

Wayne State University

Detroit, USA

Email: mohitkumar@wayne.edu

Weisong Shi
Mobile and Internet Systems Laboratory

Wayne State University

Detroit, USA

Email: weisong@wayne.edu

Abstract—In 2018 Turing Award lecture, John L. Hennessy
discusses software-centric opportunities to save Moore’s law. The
software is a major consumer of energy in ICT, IoT, and edge
systems, but even then the research to make it energy efficient
remains fractional. Java is one of the most commonly used
languages to develop software for these systems. Java has various
command-line options that an application user can use for JVM
tuning to enhance the performance of an application. However,
there is no study about how these Java command-line options
impact the energy consumption of an application. In this work,
we explore the impact of various Java command-line options on
SPECjvm2008 benchmarks in terms of energy consumption and
execution time using different JDKs. Our key findings are: 1)
Oracle JDK is more energy efficient than Open JDK, 2) Xint
command-line option is the least energy efficient, 3) UseG1GC
command-line option is the most energy efficient, and 4) Active
energy and execution time show a high correlation.

Index Terms—Java, JDK, Command-line, Energy-efficiency

I. INTRODUCTION

Information and Communications Technologies (ICT)

amounts for 10% of the world energy which will keep on

growing in future [1] and 3% of the overall carbon footprint

which is now more than the level of CO2 emission as that of

aviation industry [2]. Most of the green IT initiative in ICT

concentrate on the hardware part resulting in significant reduc-

tion of hardware energy consumption. However, a lot needs to

be done to improve the energy efficiency of the software. An

energy-aware software that can optimize execution time can

help to make ICT systems more energy efficient. Software

power savings are considered to be greater than the power

saving in hardware, but they are harder to achieve [3].

Java is one of the most commonly-used languages in ICT

systems. Java has different command-line options that can

be used to tune the JVM. These options can significantly

affect the energy behavior of Java applications. However,

there is no study characterizing the energy behavior of these

command-line options. Therefore, in this paper, we conduct a

comprehensive study to evaluate the energy efficiency of Java

command-line options. We use Intel Running Average Power

Limit (RAPL) technology to log the energy consumption

values. We first optimize the idle energy consumption of two

ICT systems and then evaluate the active energy consumption

of SPECjvm2008 benchmarks using different JDKs (Open and

Oracle) and Java command-line options. The Java command-

line options include client, server, Xbatch, Xcomp,

Xfuture, Xint, Xmixed, Xrs, AggressiveOpts,

AggressiveHeap, Inline, AlwaysPreTouch,

Xnoclassgc, UseSerialGC, UseParallelGC,

UseConcMarkSweepGC, and UseG1GC. Our work

answers the following questions:

• Do same versions of Open and Oracle JDK have same

energy efficiency?

• Which command-line option has the lowest energy effi-

ciency of JVM?

• Which command-line option has the highest energy effi-

ciency of JVM?

• What is the relation between active energy and execution

time?

Answers to these questions will help software users to tune

the JVM for energy efficiency. To the best of our knowledge,

no research optimized the idle energy consumption of a

system while evaluating the energy efficiency of different

JDKs and Java command-line options. Not optimizing the idle

energy consumption results in outliers which cause inaccurate

measurements. We optimize the idle energy consumption and

conduct statistical tests - independent sample t-test and one

way ANOVA [4]- to compare energy consumption in cases

where it is hard to decide whether the values are the same or

not. The following are the key findings of our work:

• For most of the command-line options, Oracle JDK

is more energy efficient than Open JDK. Open JDK

consumes up to 9% more energy than Oracle JDK.

• Xint command-line option results in the lowest energy

efficiency of most benchmarks with up to 125% in-

crease in energy consumption as compared to the default

server command-line option.

• UseG1GC command-line option results in the highest

energy efficiency of most benchmarks with up to 14%

decrease in energy consumption as compared to the

default server command-line option.

• Active energy and execution time show a high correlation

with a maximum value of 0.98 and a minimum value of
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TABLE I
RAPL DOMAINS

Domain Component

Package CPU package

PP0 All cores and caches

PP1 GPU

DRAM DRAM

0.94.

The rest of the paper is organized as follows. Section 2, pro-

vides the background for energy measurement, optimization

and SPECjvm2008 benchmarks. Section 3, describes the en-

ergy consumption measurement setup. Section 4, investigates

the energy consumption traits of Java command-line options.

Section 5, analyzes the relation between active energy and

execution time. Section 6, discusses related work in the field.

Section 7, concludes the paper and discusses the future work

in energy efficient software.

II. BACKGROUND

In this section, we first introduce energy-related terms,

perf, systemd, and systemctl. Then, we describe

SPECjvm2008 benchmarks in detail.

The idle power is defined as the amount of power consumed

by a system when it is not performing any task. As defined

in [5], it is the sum of static and dynamic power, as systems

have a different number of background processes running all

the time. In this work, we try to reduce the dynamic power

to stabilize the idle power. The active power is defined as the

amount of power consumed by a system while performing

a specific task such as web browsing, printing, emailing,

listening to music or playing a game.

Intel introduced the Running Average Power Limit (RAPL)

feature starting with their Sandy Bridge processors, for mea-

suring the energy consumption of onboard hardware compo-

nents. It provides energy consumption information of different

CPU-level components as listed in Table I. It uses a soft-

ware power model which estimates the energy consumption

by leveraging hardware performance counters. A user can

configure and read RAPL information through Mode Specific

Registers in privileged kernel mode. We use Linux perf

tool which leverages RAPL technology to measure energy

consumption.

systemd is a critical suite of software for the Linux

operating system that manages and operates various units

like service, target, path, mount etc. Some of the units can

trigger other units and work together to add functionality. In

this work, we utilize the service unit to optimize the idle

energy consumption of the whole system as it is the most

commonly utilized service by system administrators. We use

systemctl command to start or stop a service.

SPECjvm2008 consists of 11 benchmarks which are split

into sub-benchmarks as shown in Table II. Compiler bench-

mark has two sub-benchmarks - compiler.compiler and

TABLE II
SPECJVM2008 BENCHMARKS

Benchmarks Sub-Benchmarks

Compiler compiler.compiler, compiler.sunflow
Compress compress

Crypto crypto.aes, crypto.rsa, crypto.signverify
Derby derby

MPEGaudio mpegaudio

Scimark.X.large

Scimark.X.small

scimark.fft.large, scimark.lu.large, scimark.sor.large,
scimark.sparse.large, scimark.fft.small, scimark.lu.small,

scimark.sor.small, scimark.sparse.small, scimark.monte carlo
Serial serial

Sunflow sunflow
XML xml.transform, xml.validation

Startup

startup.helloworld, startup.compiler.compiler, startup.compiler.sunflow,
startup.compress, startup.crypto.aes, startup.crypto.rsa,

startup.crypto.signverify, startup.mpegaudio, startup.scimark.fft,
startup.scimark.lu, startup.scimark.monte carlo, startup.scimark.sor,

startup.scimark.sparse, startup.serial, startup.sunflow,
startup.xml.transform, startup.xml.validation

compiler.sunflow. compiler.compiler compiles

javac itself. compiler.sunflow compiles the sunflow

sub-benchmark from SPECjvm2008. This benchmark has its

own FileManger to manage memory. compress benchmark

uses a modified Lempel-Ziv method to compress data. It is

deterministic as it first finds common substrings and then

replaces them with a variable size code. This benchmark

is ported from 129.compress benchmark from CPU95, how-

ever, it is modified to compress real data from files in-

stead of compressing synthetically generated data. Crypto

benchmark consists of three sub-benchmarks - crypto.aes,

crypto.rsa and crypto.signverify - which focuses

on different areas of crypto. crypto.aes performs en-

cryption and decryption using the AES and DES proto-

cols with an input data of size 100 bytes and 713 KB.

crypto.rsa performs encryption and decryption using the

RSA protocol with an input data of size 100 bytes and 16 KB.

crypto.signverify sign and verify using MD5withRSA,

SHA1withRSA, SHA1withDSA and SHA256withRSA pro-

tocols with an input data size of 1 KB, 65 KB, and 1

MB. derby benchmark focuses on BigDecimal computations

and database logic using an open-source database written in

pure Java. MPEGaudio benchmark utilizes JLayer, an LGPL

mp3 library, for mp3 decoding and is floating-point heavy.

Scimark benchmark is a floating point benchmark which is

consist of five sub-benchmarks - fft, lu, sor, sparse,

and monte_carlo. Each sub-benchmark has two versions

with different dataset size, except monte_carlo (as it uses

only scalars). The large dataset has a size of 32MB for

stressing the memory whereas the small dataset has a size

of 512 KB to stress the JVM. serial benchmark utilizes

data from the JBoss benchmark to serialize and deserialize

primitives and objects. sunflow benchmark utilizes half

the number of hardware threads to test graphics visualiza-

tion. Each of the hardware thread results in four internal

threads inside the benchmark. XML benchmark has two sub

benchmarks - xml.transform and xml.validation.

xml.transform stresses the JRE’s implementation of

javax.xml.transform by applying style sheets to XML docu-



TABLE III
SYSTEM SPECIFICATION

System Component Intel Fog Node Configuration Laptop Configuration

CPU Intel(R) Xeon(R) E3-1275 v5 Intel(R) Core(TM) i5-3317U v5
Number of cores 4 2

Number of threads 8 4
Kernel 4.13.0-37-generic 4.4.0-116-generic

OS Ubuntu Server 16.04.4 LTS Ubuntu Server 16.04.3 LTS
CPU governor powersave powersave

Memory 32GB SODIMM 2133 MHz 4GB DDR3 1600 MHz
JDK OpenJDK 64-Bit Server VM OpenJDK 64-Bit Server VM

JDK build 25.151-b12 25.151-b12
JDK version 1.8.0 151 1.8.0 151

Initial Heap Size 526MB 63MB
Maximum Heap Size 8.4GB 1GB

ments. xml.validation stresses the JRE’s implementation

of javax.xml.validation by validating XML instance documents

against XML schemata. startup benchmark starts each of

the above-discussed benchmarks for one operation. For every

benchmark run, a new JVM is launched and time is measured

from starting the JVM to finishing off the benchmark iteration.

SPECjvm2008 has two run categories - Base and Peak. Base

category run doesn’t allow the tuning of the JVM. Therefore,

in this work, we utilize the Peak category as we evaluate

various command-line options to tune the JVM. Except for

startup, each benchmark goes through one iteration in

which several operations (each invocation of a benchmark is

one operation) are executed for certain duration, by defaults

240 seconds. Each iteration finishes at least 5 operations. The

duration of an iteration is never less than the specified time,

however, it increases if at least five operations are not executed

within the specified duration of time. For this work, we utilize

the default duration of the iteration. The warmup is skipped

as it is not possible to remove the warmup energy from the

total energy of a benchmark run.

III. SET UP

We leverage two different ICT systems to conduct our ex-

periments: Intel Fog Node(IFN) and Laptop. The configuration

of these two systems is presented in Table III. We use the

same versions of Open and Oracle JDK for this study. Oracle

JDK is expected to consume lesser energy as it is maintained

by the same group of coders and is more consistent. For the

Laptop, the charger is plugged in a wall outlet all the time.

Both systems are disconnected from the internet all the time.

We use the Linux perf tool to gather energy consumption

values of package and core domains. The sampling rate is set

to 10Hz. The following command is executed for each run:

$ sudo perf stat -a -r 1 -I 100\

-e 'power/energy-pkg/'\

-o pack.txt\

java programFile

where -a specifies collection from all CPUs, -r indicates how

many times the command will be repeated, -I specifies the

time interval (msec), -e specifies the event selector, and -o

specifies the name of the output file.

The total energy consumption is the sum of active and idle

energy. As perf reports the total energy, one can subtract the

idle energy out of the total energy to find the active energy of

an application. However, the idle energy of a system can vary

a lot due to the background services running on an operating

system. These variations make it hard to measure an accurate

idle energy of a system. To measure the idle energy of both

systems considered here, we conduct an experiment in which

we first optimize the idle energy and then calculate the idle

energy of both systems by removing outliers and computing

the mean of values. We first measure the idle energy of both

systems without any optimization for 24 hours with a sampling

rate of 10Hz to determine how the idle energy varies. In Fig.

1a and 2a, we show the idle energy consumption of the two

systems. We can see that the idle energy can change abruptly

at any time for both systems.

Next, we stop the background services using systemctl

command to optimize the idle energy of the systems. For both

systems, we disable all the enabled services. We again measure

the idle energy and we observe that there is a lot of variation.

The reason is that the disabled services can still be enabled

because if a service is disabled, then it is not loaded during

boot time but it can be loaded if a service is started and it

depends on the disabled service. Next, we mask all the enabled

services using systemctl command to optimize the idle

energy. If a service is masked, then it cannot be loaded even

if it is required by some other service. This time we were able

to optimize the idle energy with a very few outliers as shown

in Fig. 1b and 2b. We go one step further and mask all the

disabled services and then obtain fewer outliers, as shown in

Fig. 1c and 2c. However, outliers were still there as we can’t

mask some of the services like log in, user manager and dbus.

The next step is to remove the outliers from the 24-hour

dataset shown in Fig. 1c and 2c and calculate the mean of

the values. We use Tukey’s method to remove the outliers [6].

For the IFN and the Laptop, the outliers represent 0.001%

and 0.002% of the total data set, respectively. We remove the

outliers from both datasets. The histogram and boxplot before

and after removing outliers for the IFN are shown in Fig. 3a

and 3b, and for the Laptop in Fig. 4a and 4b. The standard

deviation for the IFN is 0.0006, and for the Laptop is 0.0007.

The standard deviation indicates that both datasets have very

low variation. The mean idle energy consumed per one-tenth

of a second for the IFN and the Laptop was found to be 0.025

J and 0.229 J, respectively. We can now calculate the active

energy by subtracting the idle energy from the total energy.

IV. ENERGY CONSUMPTION ANALYSIS

In this section, we evaluate the energy consumption of

different Java command-line options. For better accuracy, we

measure the total energy consumption of each command-line

option ten times. We then check for outliers in those ten

measurements using Tukey’s method. We replace the outliers

measurements with new measurements and again check for

outliers. We repeat this process until no outlier is left. Next,

we subtract the idle energy from the total energy consumption
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Fig. 1. Intel Fog Node package idle energy consumption: (a) with all services unmasked; (b) with enabled services masked, and (c) with enabled and disabled
services masked.
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Fig. 2. Laptop package idle energy consumption: (a) with all services unmasked; (b) with enabled services masked, and (c) with enabled and disabled services
masked.
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Fig. 3. Intel Fog Node dataset: (a) with outliers, and (b) without outliers.
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Fig. 4. Laptop dataset: (a) with outliers, and (b) without outliers.

to determine the active energy of each benchmark. We then

calculate the mean of all the ten observations to determine

the total energy consumption and the execution time of each

benchmark. In cases where the means are close, we use the

independent sample t-test (two means) or one-way ANOVA

test (more than two means) to determine whether the means

are the same. For both tests, we consider alpha value as

0.05. We log the package, and the core energy but only

present the package energy consumption values as the core

energy measurements values are negligible compare to those

of the package. compiler benchmark is not shown in any

of the result tables as it is not supported by Java SE 8. Also,

fft.large and lu.large benchmark results are not

shown as they abort when run on both systems. Each table

in the next subsections of the paper represents the total active

energy consumption and the execution time of SPECjvm2008

benchmarks. For each table, Open and Oracle represent the

different JDKs. Under each JDK we have the two ICT systems

- IFN and Laptop. Under each ICT system is the measurement

of energy consumption (E) in Joule and execution time (T) in

second. server command-line option refers to default mode

as both systems use server JVM by default. Tables for only

specific Java command-line options are included due to space

limit.

A. -client and -server

The JDK supports two type of JVM - client and

server. These two JVMs have the same runtime envi-

ronment code base, however, they use a different type of

compilers. client JVM compiler offers lesser optimization,

which results in faster compiling for short-running applica-

tions. server JVM offers an advance adaptive compiler,

which supports complex optimization for maximizing peak

operating speed of long-running applications. We compare

the energy consumption of these two options in Table IV

and V. For the client, we can see that 20 benchmarks

on the IFN and 19 benchmarks on the Laptop have lower



TABLE IV
ENERGY CONSUMPTION FOR CLIENT OPTION

Benchmark

client
Open Oracle

IFN Laptop IFN Laptop

E T E T E T E T
compress 10409.24 243.06 2535.53 244.24 10396.71 242.90 2537.34 244.81

crypto
crypto.aes 10314.78 246.68 2596.89 250.46 10377.92 246.22 2599.21 248.59
crypto.rsa 10074.29 242.02 2439.42 243.55 9623.52 241.80 2346.07 242.31

crypto.signverify 9715.88 241.96 2469.04 243.58 9700.36 241.76 2446.63 243.17
derby 10916.68 259.56 2600.44 422.25 10953.10 259.51 2606.55 421.16

mpegaudio 10464.72 243.77 2517.06 245.30 10450.29 243.43 2511.49 246.42
scimark
fft.small 11456.44 241.94 2689.68 242.97 11447.94 241.81 2684 243.46
lu.small 14771.78 241.61 2854.29 243.27 14645.49 241.54 2857.34 242.95

monte carlo 9982.14 242.52 2367.98 244.66 9947.21 242.21 2348.31 244.54
sor.large 7639.63 247.87 2491.90 257.20 7580.28 252.00 2459.64 254.95
sor.small 8166.53 242.57 2066.18 244.06 8123.92 243.06 2063.16 244.18

sparse.large 6130.27 264.51 2695.02 253.13 6148.83 251.79 2630.65 255.68
sparse.small 9754.74 243.24 2845.30 245.05 11143.90 242.62 2793.65 243.99

serial 11149.01 243.58 2573.32 247.05 11198.22 243.47 2568.53 246.29
sunflow 10111.17 242.71 2587.03 245.25 10115.83 243.43 2581.64 243.38

xml
xml.transform 11362.00 254.01 2748.23 267.81 11356.21 253.84 2753.63 267.16
xml.validation 11742.37 241.67 2535.31 243.22 11741.60 241.65 2536.2 242.89

startup
compress 32.81 1.66 23.41 3.80 32.22 1.70 22.78 3.04
crypto.aes 48.27 2.67 38.13 5.21 50.41 2.80 40.87 5.57
crypto.rsa 28.68 1.26 21.63 2.50 25.90 1.05 20.19 2.33

crypto.signverify 28.62 1.30 21.99 2.61 25.92 1.27 20.17 2.47
mpegaudio 51.49 2.04 38.82 4.78 53.26 2.12 39.52 4.62
scimark.fft 26.43 1.26 19.92 2.43 24.78 1.29 19.37 2.48
scimark.lu 22.64 0.99 18.33 2.27 21.80 1.00 17.77 2.30

scimark.monte carlo 32.91 1.89 24.96 3.42 32.24 1.90 24.28 3.38
scimark.sor 31.05 1.87 23.11 3.29 30.18 1.93 22.51 3.21

scimark.sparse 30.32 1.54 23.50 3.07 29.67 1.53 23.06 2.97
serial 56.27 2.20 43.66 5.20 56.34 2.23 44.91 5.20

sunflow 54.51 1.80 42.13 4.46 54.92 1.81 42.46 4.40
xml.transform 264.16 13.33 207.03 27.06 269.16 13.52 211.76 27.51
xml.validation 48.94 1.62 41.22 4.43 48.88 1.61 42.28 4.53

TABLE V
ENERGY CONSUMPTION FOR SERVER OPTION

Benchmark

server

Open Oracle
IFN Laptop IFN Laptop

E T E T E T E T
compress 10446.44 242.68 2533.75 244.61 10409.98 242.99 2532.61 244.36

crypto
crypto.aes 10368.44 246.26 2599.44 250.21 10366.61 246.16 2597.92 247.87
crypto.rsa 10125.59 242.22 2440.72 243.51 9636.60 241.82 2345.5 242.41

crypto.signverify 9740.42 242.04 2458.03 243.66 9725.98 241.76 2452.33 243.24
derby 10948.96 258.71 2603.97 430.39 10949.42 259.49 2603.04 422.69

mpegaudio 10474.17 243.76 2519.12 245.18 10443.40 243.68 2516.17 245.40
scimark
fft.small 11474.26 241.95 2684.87 243.51 11430.56 241.91 2683.26 243.50
lu.small 14698.87 241.61 2852.07 242.88 14697.20 241.61 2856.52 242.68

monte carlo 9974.18 242.57 2365.99 244.86 9949.61 242.27 2349.11 244.32
sor.large 7591.76 249.50 2469.21 250.93 7567.83 248.40 2462.37 251.50
sor.small 8158.51 243.03 2063.81 244.01 8123.63 243.15 2060.24 243.63

sparse.large 6073.82 262.46 2658.77 250.84 5965.71 255.23 2635.06 261.88
sparse.small 9739.27 242.70 2821.39 244.70 11109.87 242.70 2786.99 244.95

serial 11157.09 243.07 2572.46 246.17 11168.14 243.15 2570.49 245.76
sunflow 10134.22 243.56 2581.23 244.03 10113.49 242.89 2579.16 243.59

xml
xml.transform 11359.57 253.98 2740.60 266.96 11355.62 253.96 2744.93 267.07
xml.validation 11738.44 241.72 2532.73 242.67 11735.22 241.66 2529.64 242.94

startup
compress 32.56 1.68 23.51 3.01 32.00 1.63 22.84 3.01
crypto.aes 48.46 2.62 38.44 5.09 50.32 2.74 40.92 5.36
crypto.rsa 29.38 1.27 21.78 2.64 25.72 1.06 20.47 2.42

crypto.signverify 28.24 1.28 22.05 2.68 25.77 1.24 20.23 2.52
mpegaudio 52.42 2.10 37.99 4.20 52.09 2.17 39.61 4.63
scimark.fft 26.17 1.25 19.73 2.56 24.73 1.26 19.43 2.49
scimark.lu 22.69 0.99 18.47 2.25 21.90 1.06 17.87 2.20

scimark.monte carlo 33.21 1.92 24.70 3.38 32.11 1.90 24.22 3.37
scimark.sor 31.36 1.94 23.07 3.16 29.98 1.94 22.5 3.24

scimark.sparse 31.05 1.50 23.58 3.14 29.71 1.48 22.97 2.97
serial 56.24 2.13 44.22 4.98 56.70 2.28 44.67 5.07

sunflow 54.29 1.83 42.11 4.17 53.77 1.83 42.10 4.50
xml.transform 265.36 13.31 209.15 26.45 268.01 13.34 211.96 26.81
xml.validation 49.18 1.58 41.63 4.40 48.23 1.55 41.82 4.68

energy consumption when executed on Oracle JDK instead

of Open JDK. For the server, these number jump to 25

and 24 benchmarks. For the IFN, 18 benchmarks consume

more energy for server option while using Open JDK.

Using Oracle JDK instead causes client option to consume

more energy for 23 benchmarks. For the Laptop, 18 and 17

benchmarks consume lesser energy for server option while

using Open and Oracle JDK, respectively.

Two benchmarks - crypto.rsa and sparse.small

- stands out with large variation in energy consumption

for different JDK types on the IFN. sparse.small not

only shows the highest variation on the IFN but also shows

higher energy efficiency using Open JDK. For the Laptop,

crypto.rsa shows the highest variation for different JDK

versions, however, sparse.small doesn’t show the same

behavior as on the IFN. For both systems, sparse results in

higher energy consumption for the smaller dataset instead of

the larger dataset. This happens because small dataset results

in up to five times higher ops/m than large dataset. Most of

the command-line options that we are going to discuss next

show the same behavior for energy consumption variation of

different benchmarks.

B. -Xbatch, -Xcomp, -Xint, -Xfuture, and -Xmixed

JVM runs a method in interpreted mode until the back-

ground compilation is finished. Xbatch option disables this

background compilation and runs the compilation in the

foreground. For the Xbatch option, Oracle JDK results in

better energy efficiency for 21 benchmarks, for both systems.

Xbatch also results in the lower energy efficiency on both

systems for at least 21 benchmarks as compared to the default

mode for both JDKs. Xcomp forces the compilation of a

method on the first invocation instead of doing that after a set

threshold of interpreted method invocations. For the Xcomp

option, Open JDK results in better energy efficiency for 24

benchmarks on the IFN and 23 benchmarks on the Laptop. For

both systems, Xcomp results in higher energy consumption of

at least 27 benchmarks than the default mode for both JDKs.

Xint causes the JVM to run in interpreted-only mode.

This option disables the just-in-time compilation, resulting in

a considerable slow down in execution. As shown in Table

VI, for 22 benchmarks on the IFN and 20 benchmarks on

the Laptop, Oracle JDK results in higher energy efficiency

than Open JDK. Open JDK results in up to 9% increase

in energy consumption. For both systems, Xint results in

higher energy consumption of at least 27 benchmarks than the

default mode for both JDKs. For crypto.aes and derby,

Xint results in significant increase in energy consumption.

Xint also causes different variation in energy consumption

than the default mode for most benchmarks. Xint causes the

highest energy consumption for most of the benchmarks with

up to 125% increase in the energy than the default mode.

Interestingly, Xint consumes up to 28% lesser energy than

the default mode for lu.small benchmark.

Xfuture results in stricter class-file format checks. For

the Xfuture option, Oracle JDK results in higher energy

efficiency as compared to Open JDK for 20 benchmarks on the

IFN and 21 benchmarks on the Laptop. For the IFN, Xfuture

results in the higher energy efficiency of most benchmarks for



TABLE VI
ENERGY CONSUMPTION FOR XINT OPTION

Benchmark

Xint
Open Oracle

IFN Laptop IFN Laptop

E T E T E T E T
compress 10262.54 305.11 3582.90 344.55 10448.47 300.76 3594.33 331.08

crypto
crypto.aes 14236.14 371.68 5906.80 585.48 13826.80 353.63 5856.40 611.91
crypto.rsa 11185.43 280.84 3321.55 326.19 10255.85 268.66 3215.92 310.36

crypto.signverify 10191.72 299.46 3774.37 376.81 10865.56 313.89 3695.84 360.63
derby 13474.05 517.50 5815.05 946.75 13401.37 514.11 5932.39 953.83

mpegaudio 11605.41 283.70 3288.36 326.60 11439.94 282.00 3247.07 319.73
scimark
fft.small 11358.65 255.44 2825.84 272.91 11261.74 252.42 2780.51 278.73
lu.small 10467.14 268.97 2925.48 284.71 10462.62 266.74 2869.83 277.54

monte carlo 12170.18 291.06 4291.29 417.89 12357.51 315.08 4067.55 393.57
sor.large 13097.32 334.18 3851.68 364.24 13065.95 333.69 3837.35 363.64
sor.small 10237.10 265.26 3019.37 284.22 10199.15 263.83 2806.69 268.06

sparse.large 13592.60 347.62 4016.89 401.54 13457.79 344.92 4004.76 389.23
sparse.small 10268.71 261.65 3172.02 300.26 10228.77 261.84 3150.17 294.87

serial 12284.70 297.22 4011.33 376.96 11750.90 298.43 4084.54 384.48
sunflow 12701.02 290.03 3103.53 286.03 12706.04 290.76 3154.03 291.20

xml
xml.transform 12082.03 317.74 3823.75 391.98 11668.35 328.32 3890.64 397.48
xml.validation 10913.75 268.58 2942.64 276.54 10362.28 270.72 2959.56 280.39

startup
compress 39.25 2.52 30.51 4.74 37.79 2.37 29.63 4.73
crypto.aes 54.69 3.50 45.58 6.72 56.09 3.58 47.37 6.97
crypto.rsa 35.48 2.09 29.52 4.47 31.95 1.81 27.00 3.86

crypto.signverify 34.74 2.21 29.57 4.59 31.77 2.00 27.01 4.12
mpegaudio 57.88 2.97 46.05 6.43 58.12 2.86 46.30 6.34
scimark.fft 32.77 2.10 27.06 4.36 30.61 1.93 26.03 4.13
scimark.lu 28.98 1.83 25.66 3.90 27.86 1.74 24.50 3.82

scimark.monte carlo 39.39 2.76 32.05 5.26 37.35 2.62 31.00 5.01
scimark.sor 37.54 2.74 29.60 4.92 35.80 2.62 29.17 4.75

scimark.sparse 36.76 2.41 30.52 4.71 35.52 2.25 29.50 4.61
serial 61.13 3.01 50.56 6.79 62.09 2.91 51.76 6.84

sunflow 59.39 2.61 49.14 6.12 59.49 2.56 48.41 6.04
xml.transform 268.57 14.30 214.08 28.14 271.84 14.30 219.26 28.58
xml.validation 54.83 2.42 48.09 5.91 54.32 2.38 48.65 6.19

both JDKs, except startup benchmark where the default

mode is more energy efficient. For the Laptop, the default

mode results in the higher energy efficiency of most bench-

marks for both JDKs, except startup benchmark where

the default mode is more energy efficient for each sub-

benchmarks. Xmixed option executes all bytecode except hot-

methods in interpreter mode. Hot methods are those methods

which are invoked very often. For the Xmixed option, Oracle

JDK results in the higher energy efficiency than Open JDK for

20 and 24 benchmarks on the IFN and the Laptop, respectively.

For the IFN, Xmixed results in the better energy efficiency of

20 benchmarks than the default mode for Open JDK. Using

Oracle JDK instead results in the lower energy efficiency of

Xmixed option for 20 benchmarks. For the Laptop, Xmixed

results in higher energy consumption than the default mode

for 18 benchmarks for both JDKs.

C. -Xrs

Xrs option prevents JVM from using some of the operating

system signals. In this option, an operating system handles

any raised signal. Enabling this option can reduce JVM

performance. For -Xrs option, Oracle JDK consumes lesser

energy than Open JDK for 17 and 24 benchmarks, on the IFN

and the Laptop, respectively. For the IFN, Xrs causes lower

energy consumption for most of the benchmarks on Open

JDK than the default mode but higher on Oracle JDK. For

the Laptop, Xrs causes higher energy consumption for most

of the benchmarks on Open JDK than the default mode but

lower on Oracle JDK. This shows that the same JDK shows

different behavior on different ICT systems.

D. -XX:+AggressiveOpts and

-XX:+AggressiveHeap

AggressiveOpts option enables the use of

aggressive performance optimization features. For the

AggressiveOpts option, Oracle JDK results in lower

energy consumption of 20 benchmarks on the IFN and 24

benchmarks on the Laptop as compared to Open JDK. For

the IFN, AggressiveOpts is more energy efficient for 20

benchmarks than the default mode for Open JDK, however,

lesser energy efficient for 24 benchmarks for Oracle JDK.

For the Laptop, AggressiveOpts results in higher energy

consumption of at least 18 benchmarks than the default server

option for both JDKs. AggressiveHeap option enables

Java heap optimization which is optimal for long-running

computation-intensive jobs. For the AggressiveHeap

option, Oracle JDK results in the higher energy efficiency

of 19 benchmarks than Open JDK for both systems. For

both systems, AggressiveHeap results in higher energy

consumption of most of the benchmarks than the default

mode for both JDKs, except startup benchmark where

AggressiveHeap is more energy efficient for both

systems.

E. -XX:-Inline

Inline option enables replacing of a function call with

function body. It is by default enabled in JVM and can be

disabled by -XX:-Inline option. Disabling inline results

in higher energy consumption than the default mode for at

least 19 benchmarks on both systems for Oracle JDK. Open

JDK shows the opposite behavior for both systems. For JDKs,

Oracle JDK is more energy efficient for 21 benchmarks on the

Laptop but for only 14 benchmarks on the IFN.

F. -XX:+AlwaysPreTouch

AlwaysPreTouch is disabled by default as it results in a

delay in JVM start up. It enables the touching of every page on

the Java heap during JVM initialization which causes memory

allocation in heap memory. For AlwaysPreTouch, Open

JDK is more energy efficient for the 16 benchmarks on the IFN

and Oracle JDK is more energy efficient for the 17 benchmarks

on the Laptop. For the IFN, AlwaysPreTouch results in the

higher energy efficiency of most benchmarks for both JDKs,

except startup benchmark where all sub-benchmarks have

lower energy efficiency than the default mode. For the Laptop,

AlwaysPreTouch consumes higher energy for at least 17

benchmarks than the default mode for both JDKs.

G. -Xnoclassgc, -XX:+UseSerialGC,

-XX:+UseParallelGC, -XX:+UseConcMarkSweepGC,

and -XX:+UseG1GC

Xnoclassgc option disables garbage collection of classes.

Using Xnoclassgc, Oracle JDK results in the higher energy

efficiency of 19 benchmarks on the IFN and 15 bench-

marks on the Laptop. However, Open JDK consumes up to



12% less energy as compared to Oracle JDK. For the IFN,

Xnoclassgc results in the higher energy efficiency of 24

benchmarks for Open JDK but lower energy efficiency of 22

benchmarks for Oracle JDK than the default mode. The same

behavior is shown by the Laptop. UseSerialGC option uses

a single thread and freezes all the application threads during

garbage collection. For the UseSerialGC option, Oracle

JDK results in the higher energy efficiency than Open JDK for

22 benchmarks on the IFN and 18 benchmarks on the Laptop.

For both systems, UseSerialGC results in the higher energy

efficiency of at least 22 benchmarks than the default mode for

both JDKs.

UseParallelGC option uses multiple threads for

garbage collection and has the same energy consump-

tion as the server command-line option because paral-

lel garbage collector is the default garbage collector of

JVM. UseConcMarkSweepGC option minimizes the pauses

during the garbage collection by performing the garbage

collection concurrently with the application threads. For

UseConcMarkSweepGC, Oracle JDK results in the higher

energy efficiency than Open JDK for 16 benchmarks on

the IFN and 21 benchmarks on the Laptop. For the IFN,

UseConcMarkSweepGC results in the higher energy ef-

ficiency of 19 benchmarks for Open JDK but only for

9 benchmarks for Oracle JDK as compared to the de-

fault mode. The Laptop shows higher energy efficiency for

UseConcMarkSweepGC for both JDKs for at least 19

benchmarks.

UseG1GC is parallel, concurrent and compacts the free heap

space as soon as it reclaims the memory. For the IFN, Open

JDK is more energy efficient for 22 benchmarks whereas,

for the Laptop, Oracle JDK is more energy efficient for

16 benchmarks as shown in Table VII. For both systems,

UseG1GC consumes up to 14% lesser energy than the default

mode for 17 benchmarks. We select it as the most energy

efficient command-line option because for benchmarks ex-

cept startup (lightweight version of other benchmarks), it

consumes lesser energy than UseSerialGC. crypto.rsa

results in the highest energy consumption variation of different

JDKs on the IFN.

V. ACTIVE ENERGY & EXECUTION TIME

In this section, we analyze the correlation between active

energy and execution time for each command-line option for

each JDK and system. The values for the correlation are shown

in Fig. 5. The first thing we notice is that active energy

and execution time have a high correlation (strong linear

relationship) which varies with a maximum value of 0.98 for

Oracle JDK on the IFN and a minimum value of 0.94 for Open

JDK on the Laptop. The high correlation is expected because

we optimize the idle energy. Second, Open and Oracle JDK

for the two systems results in almost same correlation. Third,

for the IFN, Open JDK shows a higher correlation, whereas,

for the Laptop, Oracle JDK shows a higher correlation. Last,

XComp and Xfuture show a big difference between the

correlation values of the two ICT systems.

TABLE VII
ENERGY CONSUMPTION FOR USEG1GC OPTION

Benchmark

UseG1GC
Open Oracle

IFN Laptop IFN Laptop

E T E T E T E T
compress 9880.35 243.56 2463.06 244.67 10020.79 243.57 2461.73 244.60

crypto
crypto.aes 10303.34 246.20 2587.50 251.22 10329.26 246.66 2608.38 249.10
crypto.rsa 10055.39 242.13 2425.68 243.70 9656.16 241.83 2303.61 242.44

crypto.signverify 9751.27 242.04 2464.59 243.02 9771.50 241.96 2453.31 243.29
derby 10913.00 259.61 2638.94 422.53 10932.28 260.29 2682.52 438.71

mpegaudio 10466.92 243.94 2456.13 245.69 10456.34 243.00 2470.6 246.70
scimark
fft.small 11320.12 241.90 2693.62 243.61 11304.78 241.93 2692.59 243.40
lu.small 14559.84 241.66 2854.99 243.02 14632.02 241.66 2846.57 243.13

monte carlo 9913.28 242.66 2356.13 244.14 9913.89 242.84 2353.92 244.25
sor.large 7583.39 247.91 2485.21 255.76 7613.76 250.91 2464.48 253.23
sor.small 8292.91 243.26 2089.08 244.76 8292.73 243.29 2097.27 245.12

sparse.large 6166.40 251.40 2660.11 258.88 6057.50 254.89 2651.66 251.48
sparse.small 9459.37 242.56 2644.83 245.97 9503.92 243.32 2630.37 245.27

serial 10955.61 243.49 2537.92 246.64 10870.44 243.20 2550.76 246.78
sunflow 11058.25 242.81 2560.67 243.88 11153.35 242.67 2561.94 243.54

xml
xml.transform 11344.32 254.29 2735.98 268.48 11382.41 254.31 2748.81 269.31
xml.validation 11619.79 241.77 2493.87 243.45 11627.28 241.78 2497.92 243.20

startup
compress 34.05 1.72 24.20 3.11 34.41 1.72 24.17 3.06
crypto.aes 48.91 2.74 38.79 5.30 52.94 2.83 42.10 5.58
crypto.rsa 29.76 1.32 22.83 2.65 28.17 1.11 21.81 2.64

crypto.signverify 29.10 1.38 22.52 2.76 28.12 1.34 21.67 2.61
mpegaudio 52.43 2.19 39.75 4.73 54.39 2.17 40.48 4.75
scimark.fft 26.88 1.31 20.62 2.56 27.12 1.30 20.65 2.64
scimark.lu 24.04 1.09 19.07 2.31 24.28 1.08 18.99 2.34

scimark.monte carlo 33.41 1.96 25.78 3.50 34.02 1.98 25.51 3.55
scimark.sor 32.08 2.02 23.88 3.34 32.17 1.98 23.83 3.32

scimark.sparse 31.86 1.63 24.30 3.08 31.80 1.58 24.20 3.15
serial 56.65 2.21 44.81 5.11 59.50 2.34 46.44 5.61

sunflow 55.84 1.79 43.28 4.42 56.59 2.02 43.74 4.51
xml.transform 263.56 13.37 207.10 26.76 271.50 13.47 213.63 27.87
xml.validation 50.33 1.63 42.38 4.64 51.13 1.71 43.25 4.67

VI. RELATED WORK

Software energy efficiency research has escalated in the

past few years. The energy consumption of sorting algo-

rithms in embedded and mobile environments was examined

in [7]. Quality contracts that express dependencies between

software and hardware components for energy efficiency of

software systems were used in [8] and [9]. The impact of

languages, compiler optimization, and implementation choices

on Fast Fourier Transform, Linked List Insertion/Deletion,

and Quicksort was examined in [10]. SEEDS and Chameleon

frameworks for automating code-level changes and optimizing

Java applications were introduced in [11] and [12]. Java

thread management constructs - explicit thread creation, fixed-

size thread pooling, and work stealing - relation to energy

consumption was explored in [13]. Application programmers

were shown to be aware of software energy consumption

problems in [14]. Energy efficient multithreaded program

runtimes are shown to save 11-12% of energy in [15]. The

change in the energy efficiency of software by using different

classes that implement the same interface was investigated

in [16]. Software energy efficiency research challenges are

discussed in [17]. Java collections were studied in terms of

energy efficiency in [18] and [19]. In [20] and [21], the

authors investigated energy consumption of Java’s data types,

operators, control statements and, exception levels but did not

consider inaccuracies due to variation in idle energy. In this

paper, we handle such inaccuracies by optimizing the idle

energy consumption and then subtracting it from the total

energy consumption to calculate the active energy consump-
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Fig. 5. Active energy & execution time correlation.

tion. OpenJDK and IBM I9 performance-power analysis is

presented in [22] using SPECjvm2008 Base run category. It

is the closest work we can find, however, it neither optimize

the idle energy and nor analyze Java command-line options in

terms of energy efficiency.

VII. CONCLUSION & FUTURE WORK

In this paper, we show how various command-line options

cause Java applications to consume different energy. We eval-

uate these command-line options for active energy efficiency

on two different ICT systems using the SPECjvm2008 bench-

marks for Open and Oracle JDK. We optimize the idle energy

to get an accurate measurement of the active energy. For each

command-line options, we check which JDK performs better.

Oracle JDK results in better energy efficiency for most of

the command-line options. Next, we compare each command-

line option to default JVM settings or server command-line

option. We show that Xint causes the lowest energy efficiency

and UseG1GC causes the highest energy efficiency. We find a

strong linear relationship between active energy and execution

time. We hope these results will help software users to choose

between command-line options for a better energy efficiency

of Java applications.
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